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SEVERAL OBSERVATIONS ON THE USE OF CONJUGATE GRADIENT METHODS

by
A. K, Cline*
University of Texas at Austin

Abstract

The conjugate gradient algorithm for symmetric, positive definite systems
should be viewed as an iterative algorithm (independent of its theoretical finite
convergence). Its effectiveness for a particular problem depends upon the number
of iterations fequired to achieve a certain accuracy. In this paper we discuss
the theoretical bounds on convergence as well as experimental results for parti-
cular problem classes. We also compare the standard conjugate gradient algorithm
with the minimum residual variant and consider the use of such algorithms for

dense and banded systems.

Introduction

The conjugate gradient algorithm, commonly credited to Stiefel and Hestenes
[3] and [6], can be an important tool for the solution of large, sparse, positive

definite systems of linear equations. Let us denote such a system by

and make several important observations which distinguish this method from some
of the others used for the problem. First, the matrix A need only be provided
as a procedure, i.e., given a vector z we must have the capability of computing

Az, but how this is done does not affect the method. (This procedure for computing
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Az may be very closely related to a physical basis for the problem, and a matrix A
in sparse form or otherwise need not be stored.) Second, no additional parameters
other than the right-~hand side b and the procedure for A need be involved in
the method, i.e., no relaxation factors or similar constants need be estimated.
Third, the method is optimal in the sense that after k steps of the iteration

the approximate solution x is "best" from among linear combinations of b,

b, ..., A¥!

b, (This sense of 'best" will be made more precise later.)

In this paper we seek to discuss several questions related to the use of
the conjugate gradient algorithm. In section 1, we define the standard algorithm
as well as the minimum residual variant, then discuss their convergence properties.
We give bounds on the convergence and consider the likelihood of the bounds being
attained. 1In section 2, we compare the two algorithms theoretically and experi-
mentally. 1In section 3, the question of the affect on convergence of the eigen-
spectrum of A having isolated extreme values is considered. Finally,in section 4,

we examine the use of the conjugate gradient method to solve dense or banded

systems,

1. The Algorithms and Rates of Convergence

The standard conjugate gradient algorithm for Ax = b can be expressed

! as an iteration:

AXO::O;

xo =0 ;

| Aro =0 ;
r, = b .




ary = i; (T~ ATy ;
rk = rk_1 + Ark
The iteration is terminated when the residual norm, er“ = (rgrk)l/z,
is sufficiently small. If an initial approximation X other than zero is
known then it can be used by substituting ”xo = x" and ”r0 = b - AX" for
”:{O - 0" and nro = 0", respectively. Henceforth, we shall assume the algorithm

as given, however.
Notice the arithmetic and storage necessary. At each step one application

of A to is required as well as two inner products, four vector additionms,

Tk-1
four products of scalars and vectors, plus a minor amount of scalar arithmetic.
Storage is required for six vectors (b, x, &X, r, Ar, and Ar) although five are
sufficient if it is permissible to overwrite r on b and thus destroy b,
The preceding algorithm (referred to as the cg-method in Stiefel. and

Hestenes [3]) is almost identical to another algorithm (referred to here as the

"minimum residual variant" but in [3] as the cgl-method) in which all equations



are the same but all inner products are replaced by "A-inner products" (i.e.,

T T T T T
TooTko2r Tro1 k-1 and rk-lArk-l are replaced by rk-ZArk—Z’ rk-lAﬁ-l’ and

T 2

T
rk-lA L1~ (Ark_l) (Ar

k-l)’ respectively). The preceding comments on termination,
initialization, arithmetic, and storage all apply to this method as well, except
that the quantity Hrkﬂz, which is required for checking the termination condition,
is not a by-product of this variant and thus its computation requires one addi-
tional inner-product per iteration over the standard method.

Using a simple induction argument, the following properties may be veri-
fied for either algorithm:

1. The approximate solution X is a linear combination of b, Ab,

Ak 1y,

2. The quantity r, is the residual b-Axk and is a linear combination

of b, Ab, ..., Ab.

3. The residuals are orthogonal for the standard algorithm (i.e.,

rErj =0 if k # j) and A-orthogonal for the minimum residual

variant (i.e., rEArj =0 if k #£ 3).

Using these properties, the following optimality condition can be proved:

4, From the subspace spanned by b, Ab, ..., A~ b, Xy is the unique
vector which minimizes
-1/2 )
lla (b-Ax) || for the standard algorithm

or

||b-Ax | for the minimum residual variant.




Notice first that the quantity

"

872 (b-n) [ = (b-ax) "L (b-A)

A b Taa tb-x),

which is the "A-norm" of the error A-lb-x. Furthermore, this quantity differs
only by a constant (equal to bTA-lb) from the quadratic expression xTAx-ZbTx,
and thus this is minimized by X, over the subspace spanned by b,...., Ak-lb
with the standard algorithm. Notice also the justification for the name '"minimum
residual variant' for the second algorithm.

These properties guarantee that the n-th residual (where n is the order
of the system) must be orthogonal (or A-orthogonal) to n independent vectors
Tyreees Tl g which implies it is zero. Thus we obtain an exact solution in at
most n iterations, This observation, although true, is not relevant to the
computational aspects ofithe algorithm for two reasons. First, when finite pre-
cision arithmitic is used, exact orthogonality may not hold and the n-th residual

may be far from negligible. Second, for very large problems, n iterations of

the algorithms may
must produce acceptable solutions in far less than n iterations to be of value,

In section 2, these two algorithms will be compared. Except in that section,
all other comments about a conjugate gradient algorithm pertain to the minimum
residual variant,

The theories of orthogonal polynomials (see Stiefel [7]) and approximation
(see Kaniel [4] and Belford and Kaufman [2]) have been applied to produce estimates

of the convergence behavior of the algorithm. Their results have been applied in

the remainder of this section.




Since the approximate solution X, after k diterations is a linear
combination of b, Ab, ..., Ak-lb, we may represent it as ﬁk_l(A)b, where

ﬁk-l is some polynomial of degree k-1. Notice that any linear combination of
k-1

b, Ab, ..., A” b can be written as a polynomial in A of degree k-1 applied

to b, but ﬁk-l has the property that over all such polynomials Pk-l the cor-

responding residual r = b-Ax = b - APk_l(A)b is smallest in Euclidean norm.

Thus, if we let A = UDUT be an orthogonal eigenvalue decomposition for A,

where D = diag (di) and UTU = UUT = I, we have

e, I 1 = lla-aB,_, @)b)?

2 -
Ib-ax, | = [b-AP, _, (&) -b

5 T, 2
lo(z-D(, _; ()b

From the invariance of the Euclidean norm under orthogonal transformation, we

obtain
n
2_ A D 2|2
e "= 2 @-a.2 (@)% 7,
i=1
where b' = UTb. From the minimizing property of the polynomial ﬁk-l’ we also
have that for any other polynomial Pk-l of degree k-1,
2 _ 2 2,2
< - I
e "< Z @-ap @))%

i=1

<max (L-d.p @)% . T b
S ma P19 = by
i i=1

20 412
S max (L-dP (@) b
i

2,42
< max (L-dyR (@) 7Bl




The term 1-d,P (d ) is simply a polynomial Qk of degree k evaluated

ik-1

at di' Qk has the property, however, that Qk(O) = 1. It should be recognized

that for any such Qk of degree k and with Qk(O) = 1, there is a unique Pk-l
of degree k-1, satisfying Qk(k) =1~ kPk_ICh). We summarize the preceding

results as a theorem which shall be referred to as the polynomial bound, henceforth.

Theorem 1. Let r, = b--Axk be the residual obtained by k steps of

the minimum residual variant conjugate gradient algorithm; then for any polynomial

Pk_1 of degree k-1, we have
llz, I
B < mzx |1 - d.P (4 .

Alternatively, for any polynomial Qk of degree k satisfying Qk(O) =1, we

have

Iz, )
ﬂ_ﬂ— < max .
i
All of the results to follow whnich bound H;k”/Hbﬂ are cobtained by using
particular selections of such polynomials Pk-l and Qk'
For example, let all the eigenvalues of A be contained in the interval
[a,B], where « >0, and then let Tk denote the k-th degree Chebychef polynomial

on the interval [0,B] nommalized so Tk(B) =1, i,e.,

k

T()\)=%(0+\/—_—‘) (9-\/9—2_-—1‘)

R )

where




The polynomial Tk(lJ/Tk(O) assumes the value 1 at zero; hence we define this

as our polynomial Qk’ and since max IT 1, from the

@) < max [T, 0] =
i P T T e K

properties of Chebychef polynomials, we have:

Theorem 2, The approximate solution X, of the minimum residual vatriant

satisfies

lIb-Ax, || -
—_Tﬁxﬂk— < It © | '

where Tk is the Chebychef polynomial of degree k on an interval [a,B] con-

taining the eigenvalues of A and normalized with Tk(B) =

I1f one were to use the Chebychef iteration method (see Varga [8]) on

this problem, the same estimate would be obtained (in fact, with this method

= (Tk(O))-lTk(A)b). Its application would require knowledge of suitable con-

stants & and B, however, and, again from the optimal nature of the minimal
residual variant, the conjugate gradient residual at any step does not exceed in
norm the Chebychef iteration residual at that step.

Returning to the bound of Theorem 2, we now seek to explore the nature

-1 .
of the sequence {,Tk(O)I }k:l . Since

_.p _ _Bla+l
80 = B-a N Bla -1~
k _‘k
IT, )] = 1 AEZQLi__ /a‘+ -1 L [Bla+l V// /a-+ -1
k T2 Bla B/oc 1 pla -1 B/oz 1
k
1 (ﬁ/a+1+2¢g/a) . (B/a+1-ng‘/‘a)
T2 B/a - 1 pla - 1
r k k
Sy )]
2;_ Bla - Bla +1




O

Using simple properties of the hyperbolic cosine, it can be shown that

also

- oo ()

and we notice that for any fixed k ITk(O)I increases (hence the bound

lTk(O)I-l decreases) as B/a decreases. Thus the tightest bound of this type
is obtained when B = max di (the largest eigenvalue) and & = min di (the smallest
eigenvalue), in which case the ratio B/ = K, the condition number of the matrix A.

We state this as a corollary.

Corollary. The approximate solution Xy of the minimum residual variant,

satisfies

-1

r -

_ﬂ;];?rtkj_s ,\cbsh k cosh-l(%) " =2 (%)k i (\;—_Z::i—)k

where K 1is the condition number of A.

It immediately follows that if we want Hb-Aka/Hb“ to be less than some

given, positive tolerance ¢, then we should have

cosh k cosh-1 (—:—) > ’
thus

k > cosh-1 (l)/cosh-l(ﬁil)
-— € K-1

Figure 1 provides these values of k corresponding to condition numbers

K = 101, 102, cees 106, and residual tolerances € = 10-1, 10-2, ceey 1077,
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Recall that these numbers answer the question "how many steps of conjugate
gradient may be necessary?"

To further explore the nature of the convergence of the algorithm, notice

k
that since « >1, 0 < ;1&_;1 <1 <-J[E—Il . Thus the temm (—l:—;la in the second
Jk +1 Jk -1 J; +1

bound of the corollary becomes negligible with increasing k. Furthermore, since
it is non-negative, we simply overestimate if we ignore it. This results in the

following:

Corollary. The approximate solution X, of the minimum residual variant

satisfies

Hl;[;ll‘-lxk“ ; 2@ :1)k _, (1 ) ﬁzﬂ)k,

and if k > log (—;—eVlog (—Q—l) for € >0, then “b-A:ﬁ(H/HbH < e.
JZ +1
This approximation is very good; in fact, if the iteration bounds in
Figure 1 based on the first corollary were replaced by the values given by this
corollary, then only several entries would change, and they by one step.

Essentially this bound implies linear convergence with a factor of

(1 - ———g———) , and these numbers have been included in Figure 1. Notice that

/? +1

with well-conditioned problems, convergence is very rapid: about a bit per itera-
tion with « = 10. However, for poorly conditioned problems we see that each
extra bit may require a large number of steps (e.g., 346 steps for K = 106). One
approach to improving the behavior of the conjugate gradient algorithm is the

transformation of the original problem Ax = b into perhaps (STAS)(S-lx) = STb,
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NUMBER OF ITERATIONS NECESSARY TO YIELD RESIDUALS OF A GIVEN MAGNITUDE

CONDITION NUMBER
Size of
Residual 10! 102 103 10% 10° 108
1071 5 15 48 150 474 1497
1072 9 27 84 265 838 2650
1073 12 38 121 381 | 1202 3801
1o'4 16 50 157 496 1566 4952
107 19 61 193 611 | 1930 6104
10”6 23 73 230 726 3394 7255
1077 26 84 266 841 | 2659 8406
1078 30 96 303 956 3023 9557
Linear
Convergence .519 .818 .938 .980 .99 .998
Factor
i 4=====4

Figure 1.

Theoretical Bounds--Minimum Residual Variant
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where STAS is better conditioned than A, This is discussed in [1],

It should be emphasized, though, that these are bounds. Furthermore, they
are based upon theory including the assumption of A-orthogonality of the residual
vectors., It has been our experience, though, that while in practice the theoretical
assumption of A-orthogonality may be grossly violated, these bounds have never
been. A related question is, then, can these bounds be met (at least theoretically)?
In [4], Kaniel asserted the existence of systems for which the bounds of the first
corollary would be met; the following theorem provides a construction of such a

system,

Theorem 3, Let A be a (k+l) x (k+1) matrix with eigenvalue decomposition

L‘DUT where D = diag (di) and

4 = axg + S8 cos 1;17r , 1= 1,...,k+l,

for some £ > >0, Further, suppose b' = UTb satisfies

.

% , i=1, k+1

5 IH
’,J.

.
Jd,
L i

The residual after k steps of the minimum residual conjugate gradient algorithm

satisfies
I, I
k -1
Bl - 5@l
where Tk is the Chebychef polynomial on the interval [a,8] normalized so Tk(B) = 1,

This is the maximal value for ”rk”/”b“ for the minimum residual conjugate gradient

algorithm applied to systems~with matrices with eigenvalues in [@,B].




=
W

Proof: We intend to show that the solution after k steps is

-1 1
X =4 (I O k(A))

1

First, it is clear that A_1 I - o<
T, ©

Tk(A)) is a polynomial of degree k-1

in A and thus X is contained in the linear span of b, Ab, ..., Ak-lb. The

associated residual is

r Tk(A)b

.1
k Tk(O)

and, from the orthogonality condition, we may assert that this is the k-th residual

CARRET IR b Since the solutions

crer Xy have the form xj = Pj_ch)b where Pj-l is a polynomial

if it is A-orthogonal to the residuals r

0’ T

Xps X

of degree j-1, the residuals must also be polynomials: I - Aﬁj_l(A)b. These

are of degree up to k-1,"and it suffices to show that rTAr =0 for any r

Kk
which is a polynomial of degree up to k-1 in A applied to b. Equivalently,

we may show rTAr = 0 for a set of independent r'

K
Thus we choose r of the form Ti(A)b for j =0,...,k-1 and show

s which span the same space.

T 1 T
= = —— b.
0 rkAr Tk ) b Tk(A) ATj A
(Notice we do not claim that the j-th residual rj is Tj(A)b or Tl(O) T, (A)b

only that by using the lower degree Chebychef polynomials we may span the same
space as the proper tj's.)

Using the eigenvalue decomposition, we have

T 'T [}

b Tk(A)ATj(A)b b Tk(D)DTj(D)b s
k+1 -

z dT(d)T(d)b'
i=1
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Then from the definition of b' we have

T k+1"
b Tk(A)ATj(A)b = L

R ACRENCRE

where " indicates summation with only half the first and last terms. Now using

the definition of di and the fact that

Tj(d) = cos j cos-1 B%a (d - gg@)), for j =0,1,...,k,

we have

k+1"

bTTl_(A)AT(A)b = Z cos (i‘l)?T cos _] Sl;l) T,
) J =1
k+l" . o 1n |
i=1 i1

which is easily shown to be zero using trigonometric identities. Thus Iy is

the k-th residual and

f (- 1 - 1 . 1o
Mrkh = 15;7571— HTk(A)bL = 7511577— ﬂTk(D)b i

k-1 1/2
7——-1—7 ( ~ (cos (i-Dmb!) )
= * L coSs - Tt D,
L@ Ao .
| 1/2
TOT Vi 1

. Ty |y
T T O] '

The claim of maximality was proved in the discussion preceding the theorem. 8




Even though we now know that the bounds given in Figure | are attainable
theoretically (and numerical experiments with the system from the theorem support
the theory), it may be the case that for particular distributions of eigenvalues,
these bounds may be severe overestimates. In Figure 2, we display the actual
experimental iteration counts to solve a system of order 1000, where the eigen-
values were equally spaced on the interval [¢,B] and the components of the right-
hand side in the directions of the eigenvectors (i.e., the quantities bi) were
all equal. This is referred to as Test Problem 1. We see that for the ill-
conditioned cases there is relatively slow convergence between 10-1 and 10-2,
but then the rate increases and is essentially independent of condition number.

The case of equally spaced eigenvalues was not selected as an extreme
for showing rapid convergence. We shall see in section 3 that for rapid con-
vergence, it is better for the eigenvalues to be sparse at the extremes and
dense in the center. The equal spacing is perhaps middle ground between the
case where eigenvalues are packed in the extremes (slow convergence) and eigen-
values are packed in the center (rapid convergence). On a particular problem
(or class of problems) often a common spectral behavior is predictable, and it
may be possible to make better estimates about iteration counts than by using
Figure 1. Two important classes in which the distributions are known but dis-
appointing are the tridiagonal matrices with constant diagonals (as found in
two-point boundary value differential equations) and the block-tridiagonal ma-
trices associated with the 5-point difference operator approach to Poisson's
equation., Both of these classes have spectral distributions that are essentially
the Chebychef points of the extreme example of the theorem, and thus we should
not expect convergence behavior too much better than that of Figure 1. However,
in these cases, it is possible to transform the problem, essentially replacing

the condition number with its square root. (For details, consult [1].)
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NUMBER OF ITERATIONS NECESSARY TO YIELD RESIDUALS OF A GIVEN MAGNITUDE

CONDITION NUMBER

Size of

Residual 10! 102 103 10% 10° 108

-1

10 4 7 9 10 10 10
1072 7 19 48 101 128 148
1073 11 31 83 127 148 164
10'4 14 43 107 145 164 178
107> 18 54 126 162 178 191
1078 21 65 143 176 191 203
107’ 25 77 158 189 203 215
1078 29 88 172 201 215 226

Figure 2. Test Problem l: Minimum Residual Variant
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2. Standard Conjugate Gradient vs, Minimum Residual Variant

In section 1, two different conjugate gradient algorithms were defined.

1/2 /2

- .t .
The first minimizes the norm of A times the residual (which is A times

the error, x-—xk), the second minimizes the norm of the residual itself (which
is A times the error). As shown in [1], it is possible to define an algorithm
that minimizes rT(CA)-lr (which is (x-xk)T(A-lc)-l(x—xk)) for any symmetric
positive definite matrix C such that C-lr is computable for residuals r,

No method has come to our attention which minimizes simply the error

k-
over the space b, Ab, ..., A 1

1/2

in minimizing A times the error. As mentioned in section 1, this algorithm

b; the standard algorithm comes closest to this

also minimizes a quadratic expression xTAx-Zbe, which may be a discretization
of an energy integral. 1If one is concerned about small errors or minimum energy,
then perhaps this is the algorithm to be used, but it is our opinion that more
often, especially when the vector b may contain experimental error, a small
residual is desired. 1In the conjugate gradient software implementing the standard
algorithm, termination is not based upon a sufficiently small error or even Al/2
times errors (since these things are unattainable without the true solution x),
but instead wupon small residual. Thus one motivation for adopting the minimum
residual variant could be,''If we must terminate based upon small residual we
should select the algorithm that produces small residuals as fast as possible."
The remark has been made, however, that the residuals produced by the
standard algorithm are close to those of the minimum residual variant, The
question is then raised, "By how much can the two residuals differ?" A bound

can be obtained as follows: Let r, denote the residual from the standard

k
algorithm after k steps (recall it minimizes

coey Ak-lb) and . denote the minimum residual variant

”A-l/z(b-Axk)“ over X, selected

from the span of b, Ab,
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residual after k steps (it minimizes “b-Axk“ over the same set). We have
- 1/2,-1/2- 1/2 -1/2-
I = a2 2 < a2t )

From the above property of r, that “A-l/zik“ < “A—llzr

) A,

N e N e e e P T S e P

It thus is the case that the standard residual does not exceed the square root
of the condition number times the minimum residual., Can this bound be met?
The answer is not known to this author but certainly cannot be for the trivial

case of 2x 2 systems., In this particular case where

xk 0 " 1/VK

0 1 1

(and this can easily be shown to be the extreme case for 2x2 systems), we have

Thus “%1“ = % (JE'+ 1/ J:) . Hrlh. This is about half the value predicted by
the bound.

A ratio of ”;kh to HrkH even mildly approaching /: for large «
would be disastrous for the standard algorithm, since not only is JZ large
but the rate of convergence for these problems is so slow that the number of

iterations required to get ”;k” sufficiently small could be prohibitive.



[
O

In Figure 3, we display the results of applying the standard algorithm
to Test Problem 1. We see for small condition number (i.e., 101), the required
steps are nearly identical to those for the minimal residual variant (compare
with Figure 2). However, for the 10-1 level of residual, notice how rapidly the
number of iterations increases. One can observe the residual norms increasing
to more than ten times Hb“ for many steps (and hence ratios of “;k” to Hrkﬁ
of more than 10 since Hrk” < “blb. But then “}k” begins a very sudden descent,
such that the 10-2 line of Figure 3 lags the same line of Figure 2 by at most
5 steps. Thereafter, the two tables agree to an even greater extent.

The conclusions one may draw from this are not fixrm. It appears the
standard algorithm's behavior may "asymptotically" agree with the minimal residual
algorithm for some problems., Certainly the initial behavior can be very different
especially for poorly conditioned problems. This may be important if a good
initial estimate is availéble and only slight reduction in residual norm is re-
quired. Such is the case in time-dependent problems when slightly different
systems are being solved at each time step, and the final solution at one time
timate for the solution at the next time step; or
with non-linear systems where the conjugate gradient algorithm is being used to
solve a sequence of linearized approximations, In general, since the minimum
residual variant requires only one additional inner product per step (and it
is possible to dispense with this except on occasional steps) and guarantees

smaller residual, it is preferred by this author,
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NUMBER OF ITERATIONS NECESSARY TO YIELD RESIDUALS OF A GIVEN MAGNITUDE

CONDITION NUMBER
Size of
Residual 10t 102 103 10% 10° 108
— . i
-1
10 4 10 26 85 115 136
-2
10 8 22 66 113 136 153
-3
10 11 34 93 133 153 168
-4 '
10 15 45 114 151 168 182
107° 18 57 132 166 182 195
1076 22 68 148 180 194 206
1077 25 79 162 192 206 217
1078 29 90 176 204 217 228

Figure 3. Test Problem 1: Standard Conjugate Gradient
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3. The Effect of Isolated Extreme Eigenvalues on Rate of Convergence

It was mentioned in the previous section that poor convergence (i.e., close to
the theoretical bounds) is observed when eigenvalues are packed at the extremes. The
case when the values are packed in the center and the extreme values are well separated
is very different. Remarks such as "The method takes several steps cleaning out the
components of the‘solution associated with the extreme values and then moves in on
the packed region" and "The rate of convergence essentially depends upon the dense
section of the spectrum' have been made. In this section such questions will be
explored theoretically and experimentally.

First we may consider the case where the largest eigenvalue is well separated
from the remainder. We assume P 1is exactly this largest eigenvalue and all other
eigenvalues are in an interval [a,8'], with 0 < a < 8' < B. As shown in [l], we may
consider the polynomial Q (N = (T (0) "(1-g"'NT! (N where T , fis the
Chebychef polynomial of degree k-1 on the interval [@,8'] and normalized so
T&-I(B') = 1, Certainly, kais of degree k and satisfies Qk(O) = 1., Furthermore,

since ITi_l(K)i <1 for Ne [,B'], we have

SN E!
QM < It

AN
=)
~
(=)
~

and Qk(B) = 0. Since all eigenvalues are contained in [a,B'] U {B}, we may apply
the polynomial bound and conclude that after k steps of the minimum residual

variant, 'kk“/”bnk-l is bounded by

k-1
-1 2
IT! ., ©) | ~(1-——————) .
k-1 YB'/a +1
We may conclude then that the rate of convergence depends upon k' = 8'/a

and that the effect of the eigenvalue at B is only the addition of one iterative
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step. This can immediately be extended to several large eigenvalues (say
£
B.y...,B, >B") by using Q ) = (' O > T (1-8"1T' (V). In this case
1 £ k k-2 ie1 k-2

the addition of the £ eigenvalues larger than B' incurs a lag of at most
{ steps in the iteration from the case where all eigenvalues are in Bx,aﬂ .
Although theoretically correct, the actual computational results are
not quite as pleasing. In Figure 4, we display the result of placing 999 eigen-
values equally spaced in E],]J (thus k' = 10) plus 1 eigenvalue at 1, 10, ...,
105. This is Test Problem 2., As in Test Problem 1, b' contains equal components.
Theory predicts that all columns should differ by at most 1 step from the first
column of Figure 2, Instead, we see slight increases as the condition number
increases, It appears that the effect of finite precision arithmetic is equiva-
lent to perturbing the large eigenvalue 3 in such a way that the factor (1-E-1\)
from the theory is not quite zero at this eigenvalue.
We now consider the effect of a well-separated eigenvalue at the lower
end of the spectrum. We assume we have a < o' < 8, where & 1is the lowest
eigenvalue and all other values are contained in E;',B]. As in the preceding

analysis, we could consider the polynomial

Q0 = (1 O e T 09

where Tﬂ-l is the Chebychef polynomial of degree k-1 on [a',B]. Obviously,

Q@ =1 and Q (@ =0. Since ITg_l(k)l <1 for X e [a',B], we have

" -1 A1
Q) < Iy ;@7 - Jr-a x|

1] -1 - i
<y, @ - [1-plai.
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NUMBER OF ITERATIONS NECESSARY TO YIELD RESIDUALS OF A GIVEN MAGNITUDE

CONDITION NUMBER
Size of
1 2 3 4 5 6
idual 10 10 10
Residua 10 10 10
1071 5 5 5 5 6 6
-2
10 7 8 9 9 10 10
-3
10 11 13 14 14 15 16
-4
10 14 16 17 18 19 20 .
1072 18 21 22 23 25 26
1078 21 24 26 27 29 30
1077 25 28 30 32 34 36
1078 29 32 35 38 40 42

Figure 4. Test Problem 2
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Since all eigenvalues are contained in the interval (o} U BI',B], we may again

apply the polynomial bound theorem and conclude that after k steps of the

minimum residual variant Hrk”/”b” is bounded by IT" (O)I - (B/a-1) ~
2 k-1
(x-1) - (1 -\-—————f———) . So although the rate of convergence is governed
VB/at +1
by the factor (1 - ———EL————-) which depends on the "essential condition number'
yB/a' +1
~' = 3/a', a constant (K -1) also enters and this can be immense. We see that

’ T
perhaps 1log (k- D//f—ﬁ;———) additional steps are required simply to reduce
vk' -1

T, 1 © |"(x-1) to about 1.
In Figure 5, we present the results for Test Problem 3 in which 999

eigenvalues were equally spaced in the interval [1,10], the last eigenvalue
being successively at 1, 10-1, 10-2, ceay 10-5. Again, the vector b
had equal components in the direction of all eigenvalues. Thus the real condition

2

number, B/, is 10, 107, ..., 106 while the essential condition remains very low,

J
- -2 .

10. Bv examining the 10 residual level and those below, we see that the rate

of convergence is about constant over all the condition numbers as the theory

V-1

T -1
- L 2 3 4 5 6
/. 11, 14, 18, and 21 for condition numbers 107, 107, 10, 107, and 10 , respec-

suggests. The theory also suggests a lag (i.e., log (k- 1)/( ) ) of about

tively. From observation we see the actual lags are about 5, 9, 12, 16, and 19,
These lags may seem negligible for this particular problem; more commonly, how-
ever, the reduction of condition number is less dramatic than from 106 to 10 and
in such cases the assymptotic rate (i.e., the rate associated with the smaller
condition number) may not be exhibited until a significant number of iterations

has been performed.
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NUMBER OF ITERATIONS NECESSARY TO YIELD RESIDUALS OF A GIVEN MAGNITUDE

CONDITION NUMBER
Size of
Residual 10 102 103 10% 10° 108
- — =
1071 4 A 4 4 4 4
-2
10 7 13 17 20 24 27
1073 11 17 20 24 27 31
-4
10 14 20 24 27 31 34
-5
10 18 2 27 31 34 38
-6
10 22 27 31 34 38 41
1077 25 31 34 38 41 45
1078 29 34 38 41 45 48

Figure 5.

Test Problem 3
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In conclusion, then, it can be said that the two remarks about convergence
made at the beginning of this section (i.e., that the rate depends essentially
on the region of clustered eigenvalues) are to some extent true, however, much

more so with the isolated large eigenvalues than with the small ones.

4, Use of the Conjugate Gradient Algorithm for Dense and Banded Systems

The rates of convergence and related number of steps for acceptable
solutions have been discussed largely independent of the actual dimension of
the system. The important consideration has been the distribution of the eigen-
values, Figure 1, it may be recalled, provides guaranteed bounds on the number of
steps depending only on condition number and is totally independent of the
system's dimension.

While we have suggested that the procedure for applying the matrix A
to a given z be related to the nature of A as an operator, it is certainly
possible to represent A as an nxn matrix of coefficients (in dense or sparse
form) and simply take inner products of its rows with 2z (or linear combinations
of A's columns if that is preferred) to determine Az. In such a case we would
expect the amount of work per application to be approximately 1 multiplication
and 1 addition for every non-zero in the matrix, Let us denote the number of
non-zeros by N. The algorithm itself requires about 7 n multiplications and
additions per step, and if k iterations are necessary for sufficient convergence,
this is k (N+7n) multiplications (and the same number of additioms).

We have seen that in the case of well-conditioned problems, a small number
of iterations may result in acceptable accuracy, and hence the question arises:
Could conjugate gradients be more efficient than a decomposition method even on
dense systems? If we compare with Cholesky factorization, followed by solving

a pair of triangular systems which requires about n3/6 +n - 0(n) wmultiplications,
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we may conclude that conjugate gradients will be more efficient whenever
k(N+7n) < n3/6 + nz.

Since N 1is certainly bounded by n2 (the situation where A 1is dense), we

may say that this is the case if n exceeds 3 (k- 1+ \/(k-l)z + 14/3k‘) .
In Figure 6, we have taken the values of k given in the first 3 columns of
Figure 1 and replaced them by sufficient values of n. Recall that these figures
are based upon slowest possible convergence and dense systems; if either property
were not to hold, the sufficient n would be lower.

éor banded systems of bandwidth m (i.e., at most 2m+ 1l non-zeros per
row), an application of A requires about n(2m+l) multiplications (and the
same number of additioms). Taking k conjugate gradient steps here requires,
then, about kn(2m+8) multiplications. Comparing this with banded Cholesky

factorization and banded triangular system-solving (which together require about

n/2 - (m+l) (m+6) multiplications, see [5]), we seek to have

kn(2m-8) < ‘—2‘(m+1) (m=+6)

m-1) (m+6

k< i md)

or

m < % Gk-7) 1 + 148 (Bk-3) / (4k-7)2

In Figure 7, we display the bandwidths which would result in conjugate gradient
exceeding the efficiency of the banded Cholesky approach. Since the operation
counts for Cholesky assume m << n, this should be considered. What also should

be considered is that we have actually only assumed that no more than 2m+l non-zeros
occurred in any row. vWe did not assume anything about the location of the non-zeros:

the matrix need not be symmetrically permutable into banded form for the validity
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Condition Number
Size of 1 2 3
Residual 10 10 10
107! 31 91 289
10°2 55 163 505
-3
10 73 229 727
-4
10 97 301 943
107° 115 367 1159
10°° 139 439 1381
1077 157 505 1597
1078 181 577 1817

Figure 6. Sufficient Dimension of Dense

Algorithm to Be More Efficient Than Cholesky Factorization

System for Conjugate Gradient
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Condition Number
Size of 1 2 3
Residual | 10 10 10
4
-1
10 14 54 186
-2
10 30 102 330
-3
10 42 146 478
-4
10 58 194 622
-5
10 70 238 766
-6
10 86 286 914
-7
10 98 330 1058
1078 114 378 1206

Figure 7. Sufficient Bandwidth of Banded System for Conjugate Gradient

to Be More Efficient Than Cholesky Factorization
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of the conjugate gradient operation counts., Alternatively, the Cholesky approach

may begin with a time-consuming bandwidth reduction stage and result in a permuted
matrix with a certain bandwidth but a great deal of sparsity within the bands.

Most factorizations do not exploit these internal zeros (it is as costly to deter-
mine them as it is to ignore them), and thus if the bands were only about p7% full,

the necessary bandwidth for conjugate gradient to be more efficient would be about

p% of the bounds given in Figure 7, and this ignores any time for bandwidth reductions.

While we do not wish to suggest that the conjugate gradient approach is
even competitive for all problems, there certainly exist practical problems which

are full or banded and for which conjugate gradient is much more efficient.
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